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Abstract. We consider a trapped ultra-cold gas of (non-condensed) bosons with two internal states (de-
scribed by a pseudo spin) and study the stability of a longitudinal pseudo spin polarization gradient. For
this purpose, we numerically solve a kinetic equation corresponding to a situation close to the experiment
at JILA [1]. It shows the presence of Castaing’s instability of transverse spin polarization fluctuations at
long wavelengths. This phenomenon could be used to create spontaneous transverse spin waves.

PACS. 03.75.Nt Other Bose-Einstein condensation phenomena – 51.10.+y Kinetic and transport theory
of gases – 75.30.Ds Spin waves

1 Introduction

Recent experiments [1] with a trapped ultra-cold (non
condensed) Bose gas with two internal states have shown
the existence of interesting relative population dynamics.
Theoretical studies [2,3] making use of a pseudo spin de-
scription for the internal states have explained this phe-
nomenon as pseudo spin oscillations due to the “identi-
cal spin rotation effect” (ISRE) [4] which appears when
the temperature is low enough for the binary collisions
to be in the quantum regime. Alternatively, this mecha-
nism can be understood as a “spin mean-field” [5]. In a
polarized system, this implies the existence of low energy
excitations of the transverse spin polarization, named spin
waves. The prediction of spin waves in dilute gases [5,6]
as well as their observations in H↓ and helium [7] goes
back to the 1980’s. Shortly later, Castaing [8] showed that
a strong gradient of longitudinal spin polarization is un-
stable with respect to transverse fluctuations. His study
focused on homogeneous polarized 3He gas and assumed
that the spin waves were in the hydrodynamic regime. The
purpose of this article is to provide a quantitative study
of the existence of Castaing’s instability in an inhomo-
geneous system relevant to the experimental situation at
JILA [1]. In this experiment, neither the hydrodynamic
nor the collisionless regime for the spin oscillations are
reached. This work is motivated by the recent contribu-
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tion of Kuklov and Meyerovich [9], who were the first to
suggest and study the existence of Castaing’s instability
in this context. For completeness, one should be aware
of the numerical studies of Castaing’s instability in po-
larized Fermi fluids, which are based on the solution of
the Leggett equations rather than the full kinetic equa-
tion [10].

2 Kinetic equation; Leggett equations

The physical situation we consider is close to that of the
experiment at JILA [1]: 87Rb atoms (bosons) with two hy-
perfine states of interest (denoted by 1 and 2) are confined
in an axially symmetric magnetic trap elongated in the
Ox-direction. The temperature T is about twice the crit-
ical temperature for Bose-Einstein condensation, so that
the gas is non-degenerate (Boltzmann gas). However, the
de Broglie thermal wavelength is much larger than the
scattering length so that the collisions occur in the quan-
tum regime. It is convenient to consider the pseudo spin
associated with the two hyperfine states 1 and 2 (the ba-
sis in spin space is denoted by {e⊥,1; e⊥,2; e‖}). Initially
the spin polarization is longitudinal (i.e. along the “ef-
fective external magnetic field”) and has a strong spatial
gradient. For example, on the left (resp. right) of the trap
center, the cloud of atoms is mostly in state 1 (resp. 2).
This might be achieved, for example, by preparing a cloud
of atoms in state 1 and a cloud of atoms in state 2 sep-
arated by a sharp optical potential barrier at the center
of the magnetic trap. After removal of the optical barrier,
as the two clouds mix, a strong longitudinal spin polariza-
tion gradient appears in the region of overlap. If it is strong
enough, one should be able to observe the appearance of
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a large transverse component of the spin polarization as a
result of Castaing’s instability.

To study this system, we write an effective one-
dimensional kinetic equation [2] in terms of a local den-
sity in phase space f(x, p, t) and (pseudo) spin den-
sity M(x, p, t), where x is the position, p the momentum,
and t the time. The one-dimensional description for an
elongated system is justified by the time scale separation
associated with radial and axial motions characterized by
frequencies ωrad and ωax respectively. In the experiment at
JILA, ωrad/2π = 230 Hz and ωax/2π = 7 Hz [1]. The time
scales differ by more than an order of magnitude leading to
an effective dynamical averaging over radial dynamics as
described in references [2,3]. We define the local density n
and spin polarization m by

n(x, t) =
∫

dp f(x, p, t)

m(x, t) =
∫

dpM(x, p, t). (1)

The local density of atoms in state 1, 2 is then given
by n1,2 = (n ∓ m‖)/2, defining m‖ as the longitudi-
nal component of the spin polarization. We also denote
gij = 4π�

2aij/m as the coupling constants associated to
the different scattering lengths aij where i and j = 1, 2
(a21 = a12 and m is the mass of the particles).

We now review the different terms entering the kinetic
equation (for details, see Ref. [2]). The force acting sim-
ilarly on both internal states contains three terms: the
magnetic trap, the mean-field, and the Stern-Gerlach force
(associated to a gradient of “effective external magnetic
field” Ω, see below). The magnetic trap force is dominant,
so the associated potential energy is given by

V1(x) + V2(x)
2

=
1
2
mω2

axx
2 (2)

where V1 and V2 are the magnetic trapping potentials act-
ing on states 1 and 2. The differential force can be de-
scribed in the pseudo spin picture by an “effective exter-
nal magnetic field” Ω which contains two contributions:
one due to the differential Zeeman effect and one due to
the differential mean field, so that

�Ω(x) = [V2(x) − V1(x) + (g22 − g11)n(x)/2]e‖ (3)

where e‖ is a unit vector in the longitudinal direction. Fol-
lowing reference [1], we have assumed that 2g12 � g11+g22

for simplicity. The average value over the sample of the
“effective external magnetic field” is removed by going to a
uniformly rotating frame (Larmor frame). It is also crucial
to consider the ISRE which manifests itself as a “molec-
ular field” or “spin mean field” g12 m(x, t)/2, which adds
to the “effective external magnetic field” (3). Finally, the
collision integral is treated in a relaxation-time approx-
imation with a time τ of the order of the average time

between collisions. The kinetic equation is written as

∂tf +
p

m
∂xf − mω2

axx∂pf � −(f − f eq)/τ (4)

∂tM +
p

m
∂xM − mω2

axx∂pM − (Ω +
g12m
2�

) × M �
−(M − Meq)/τ (5)

where f eq and Meq are local equilibrium phase space
densities.

In the hydrodynamic regime close to local equilib-
rium, the above equations reduce to the counterpart of the
Leggett equations [11] in the case of a Boltzmann gas [6],
namely

∂tm + ∂xj = Ω × m

∂tj − (Ω +
g12m
2�

) × j +
kBT

m
∂xm + ω2

axxm � − j
τ

(6)

where j(x, t) is the spin polarization current along Ox.
These equations are also valid in the collisionless
regime close to global equilibrium [11]. We define µ =
g12n(0)τ/2� as the dimensionless parameter which charac-
terizes the strength of the ISRE and denote D = kBTτ/m
as the spin diffusion coefficient.

3 Castaing’s instability

Studying polarized 3He gas, Castaing [8] noticed that a
sufficiently strong longitudinal spin polarization gradient
is unstable against transverse long wavelength fluctua-
tions. This result was obtained by analyzing a uniform
gas (ωax = 0) with a uniform precession frequency (so that
Ω = 0 in the Larmor frame) and by assuming a time in-
dependent spin gradient. Using the Leggett equations (6),
Castaing studied the stability of this system with respect
to the transverse fluctuations. He assumed a small plane
wave perturbation around a slightly non-uniform station-
ary solution such that

m(x, t) = m0
‖(x)e‖ + δmei(kx−ωt)

j(x, t) = −D∂xm0
‖(x)e‖ + δjei(kx−ωt). (7)

For circularly polarized transverse spin waves in the pres-
ence of a strong gradient of longitudinal spin polarization,
one obtains the following spectrum for the hydrodynamic
regime (∂tj � 0)

ω =
D

1 + (µm0
‖/n)2

(
µm0

‖/n − i
)(

k2 − µk(∂xm0
‖)/n

)
.

(8)
Here, a mode with wave vector k is unstable if the mode
frequency ω has a positive imaginary part ωI, which leads
to instability when

k2 < µ|k(∂xm0
‖)|/n. (9)

The goal of this paper is to study Castaing’s instability
in a trapped ultra-cold gas. Using a numerical simulation,
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Fig. 1. Initial density of atoms in state 1 (solid line) and
2 (dashed line) giving a strong gradient of longitudinal spin
polarization near the center of the trap (∂xm0

‖/n(0) = 2/xT).
The total density is also plotted (dotted line).

described in the next section, we show that an instabil-
ity does occur. The situation we study is richer than the
one considered in Castaing’s original work in several as-
pects: (i) with the full kinetic equation (instead of Leggett
equations) we can describe spin oscillations of large ampli-
tude, (ii) we are not limited to the hydrodynamic regime
(for example, regimes between hydrodynamic and colli-
sionless are included), (iii) the longitudinal spin polariza-
tion gradient is not assumed to be constant, and (iv) we
can also include a possible gradient of the precession fre-
quency (i.e. the “effective external magnetic field” is po-
sition dependent).

4 Numerical simulation

The kinetic equations (4, 5) is solved numerically by
propagating in time the initial distribution in a dis-
cretized phase-space using the Lax-Wendroff method (see
e.g. [12]). We assume that the density in phase space is ini-
tially at equilibrium f = f eq ∝ exp(−x2/2x2

T − p2/2p2
T),

with xT =
√

kBT/mω2
ax and pT =

√
mkBT . As the

equilibrium distribution does not evolve in time under the
action of (4), the local density is constant and we concen-
trate on the evolution of M described by the kinetic equa-
tion (5). The initial spin density distribution M is taken
as the product of the Maxwell-Boltzmann equilibrium dis-
tribution along the longitudinal axis and a function which
equals −1 to the left of the trap center (x < −xT), +1
to the right (x > xT) and has a constant positive slope
through the center (−xT < x < xT). The resulting ini-
tial density of atoms in state 1 and 2 is shown in Figure 1.
We introduce a small initial transverse perturbation in or-
der to start the instability. Without loss of generality, the
perturbation can be written as a plane wave (with spa-
tial frequency of order 1/xT) multiplied by the Maxwell-
Boltzmann equilibrium distribution and divided by a num-
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Fig. 2. Time evolution of the (normalized) transverse spin
polarization m⊥,1(x, t)/m⊥,1(x, 0) at different positions in the
trap: x/xT = 0 (solid line); 5/25 (dashed line); 10/25 (dotted
line); 15/25 (dashed-dotted line). For this simulation µ � 22,
ωaxτ � 0.6, δΩ/ωax = 2, ∂xm0

‖/n(0) = 2/xT and N = 103.

ber N � 1 (typically between 103 and 106):

M⊥,1(x, p) = f eq(x, p) cos(πx/xT)/N . (10)

Parameters used in the simulation are taken from refer-
ence [1]. The axial trapping frequency is ωax/2π = 7 Hz
and the time between collisions τ ∼ 10 ms, so that ωaxτ ∼
0.5. The “effective external magnetic field” is taken to be
an inverted Gaussian of depth δΩ (|δΩ|/ωax is varied be-
tween 0 and 2) and half-width xT. The density at the cen-
ter of the trap is n(0) = 1.8 × 1019 m−3. The initial spin
polarization gradient near the center of the trap is varied
and typically |∂xm‖|/n(0) ∼ 2/xT. For 87Rb atoms, with
a12 = 5.2×10−9 m and T = 0.6 µK, the ISRE parameter is
µ ∼ 5 . With these parameters, an instability can already
be observed in our simulations but is probably too weak
to be detected experimentally. To enhance the effect, we
take a scattering length 5 times smaller (a12 → a12/5) and
an axial trap frequency 20 times smaller (ωax → ωax/20),
keeping a constant density at the center of the trap. We
discuss these matters further in the next section.

As the phase space is modeled by a discrete grid with
finite size, it is important to distinguish between a physical
instability and a numerical one. This can be easily done
as only the latter will depend on the grid spacing. One
can always get rid of a numerical instability by choosing
a sufficiently tight grid.

Results of the simulation are shown in Figures 2 and 3.
The time evolution of the transverse spin polarization is
plotted in Figure 2 for different positions near the center
of the trap, where the longitudinal spin polarization gra-
dient is most pronounced. The instability is clearly visible,
owing to a large enhancement of the transverse spin po-
larization by a large factor comparable to N . Figure 3
shows the logarithm of the time evolution of the (normal-
ized) transverse spin polarization at the center of the trap.
In this representation, one can clearly distinguish the
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Fig. 3. Time evolution of the logarithm of the (normalized)
transverse spin polarization m⊥,1(0, t)/m⊥,1(0, 0) at the center
of the trap. The two lines are plotted to visualize the exponen-
tial rise of the instability (full line) and then the exponential
decay of the spin wave (dashed line). The parameters have the
same values than for the simulation of Figure 2.

exponential rise of the envelope (after a short delay of
order of the time between collisions) and its subsequent
exponential decay.

5 Discussion

The initial rise of the transverse spin polarization shows
that an instability indeed occurs. As already stated, the
results presented here were obtained for a scattering
length a12 and trap frequency ωax that were smaller than
in the current experiment at JILA [1] (by factors of 5
and 20 respectively). This was done to enhance the effect
of the “spin mean-field” (to favor the instability) by in-
creasing the ISRE parameter µ1. As will be seen below,
we have to keep ωaxτ � 1, which implies scaling the axial
trap frequency with the square of the scattering length
since τ−1 ∝ a2

12. This procedure for enhancing the ISRE
insures that the gas remains non-degenerate.

The phenomenon observed in Figures 2 and 3 may be
broken down into the following four steps.

(I) During a time of the order of the time between
collisions τ ∼ 250 ms a hydrodynamic description is not
valid (the spin polarization current, which is a fast vari-
able, has not reached its stationary value yet). Figures 2
and 3 show that the transverse spin polarization does not
evolve significantly.

(II) Then, as shown by the solid line in Figure 3,
the envelope of the transverse spin polarization rises ex-
ponentially (the coefficient in the exponential ωI is al-

1 This could be done experimentally by using a Feshbach
resonance to decrease the scattering length, as µ ∼ λT/a12

where λT is the de Broglie thermal wavelength.

most constant in time). This is a characteristic of an in-
stability. The value of ωI (as compared to the formula
obtained by Castaing, see Eq. (8)) is modified by the
presence of the trap. An estimate of the time needed
for the instability to develop (see Ref. [9]) is given by
tinst ∼ L2

m/D � 1/ω2
axτ ∼ 1 s (where Lm is the char-

acteristic size of the longitudinal spin polarization gradi-
ent; Lm � xT in a typical simulation). It reproduces cor-
rectly the order of magnitude of the observed maximum
of transverse spin polarization in the simulation. The in-
stability can develop only if the spin polarization current
has reached its stationary value, so that τ < tinst which
implies ωaxτ � 1.

(III) The imaginary part of the frequency ωI varies
slowly in time because the gradient of longitudinal spin
polarization is not constant but decays as a result of both
spin diffusion and the presence of the trap. The change of
sign of ωI marks the end of the exponential grow. Once ωI

is negative, the transverse spin polarization decays as an
ordinary damped spin wave.

(IV) The longitudinal spin polarization gradient fi-
nally decays on a time scale of the order of the diffu-
sion time tdiff ∼ L2/D ∼ 4 s where L, is the size of
the cloud (L/xT ∼ 2). As emphasized by Kuklov and
Meyerovich [9], if L > Lm, the instability develops faster
than the longitudinal spin polarization relaxes, in accor-
dance with the results of our simulation. Once the lon-
gitudinal spin polarization is zero, ωI ceases to evolve in
time, and consequently the envelope of the transverse spin
wave decreases exponentially (dashed line in Fig. 3). This
happens for t � tdiff . The frequency of the spin wave is
not completely determined by the real part of the mode
frequency in equation (8), as the gradient of external pre-
cession frequency, ∂Ω, and the presence of the trap are
not taken into account. Actually, its order of magnitude
(at the center of the trap) is given by the external preces-
sion frequency δΩ = 2ωax � 2π×0.7 Hz. We have checked
that when δΩ/ωax = 0, the transverse spin polarization
at the center of the trap does not oscillate.

The criterion for an instability (see Eq. (9)) is quali-
tatively verified at the center of the trap if one takes into
account the fact that wave vectors k are limited by the
presence of the trap. This forces k > 2π/L and the crite-
rion becomes

µ
|∂xm0

‖|
n(0)

>
2π

L
∼ π

xT
· (11)

Using an initial longitudinal spin polarization gradient
∂xm0

‖/n(0) = 2/xT and L ∼ 2xT implies that the ISRE
parameter µ should be larger than ∼ 2. In the simulation,
we found an instability threshold at µ � 4. Obtaining a
significant instability requires a much larger value of the
ISRE parameter.

We now discuss the relevance of this criterion for one
of the experiments done at JILA (see the first article
of Ref. [1]), where spatial separation of the two inter-
nal states was observed as a result of an initial π/2 rf
pulse. The maximum longitudinal spin polarization oc-
cured at the maximum of spin state separation and can
be estimated as |∂xm‖|/n(0) ∼ 1/xT (at x ∼ ±xT/2).
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Since the value of the ISRE parameter is µ ∼ 5, our nu-
merically obtained criterion (µ|∂xm0

‖|/n(0) � 8/xT) pre-
dicts no instability. Whether it is experimentally feasible
in practice to reach transient total (or nearly total) sepa-
ration of the two spin states, so that, when re-mixing, the
longitudinal spin polarization gradient would be strong
enough for Castaing’s instability to develop, is not clear.
A very strong initial gradient of longitudinal spin polariza-
tion with µ ∼ 5 may not be enough to start the instability
because the spin diffusion is very efficient in decreasing a
strong gradient. One would have to maintain a strong lon-
gitudinal spin polarization gradient in order to create an
instability with the current experimental value of µ.

6 Conclusion

Our numerical simulation confirms the possibility of
observing Castaing’s instability in a trapped ultra-cold
gas with two internal states, as proposed by Kuklov and
Meyerovich [9]. We solved a one dimensional kinetic equa-
tion numerically, and were therefore able to include effects
that are beyond the usual treatment of Castaing’s insta-
bility in terms of a small amplitude hydrodynamic descrip-
tion. We argue that Castaing’s instability was probably
not relevant for the previous experiments done at JILA [1]
as both the ISRE parameter µ and the longitudinal spin
polarization gradient were too small. This does not pre-
clude observation of the instability in future experiments
if relevant parameters like the trapping frequency and the
scattering length are chosen appropriately. We suggest the
use of Castaing’s instability as a way of creating sponta-
neous transverse spin waves as a result of a strong initial
longitudinal spin polarization gradient. Our calculations
are also valid for a non-degenerate gas of fermions (see
Ref. [2]), where similar effects could be observed, in a case

where g11 = g22 = 0 and the “spin mean-field” changes
sign.
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Curie (Paris).

References

1. H.J. Lewandowski, D.M. Harber, D.L. Whitaker, E.A.
Cornell, Phys. Rev. Lett. 88, 070403 (2002); J.M.
McGuirk, H.J. Lewandowski, D.M. Harber, T. Nikuni, J.E.
Williams, E.A. Cornell, Phys. Rev. Lett. 89, 090402 (2002)

2. J.N. Fuchs, D. Gangardt, F. Laloë, Phys. Rev. Lett. 88,
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